.\" Copyright (c) 1995 Michael Chastain (mec@duracef.shout.net), 22 July 1995.
.\" Copyright (c) 2015 Andrew Lutomirski
.\"
.\" %%%LICENSE_START(GPLv2+_DOC_FULL)
.\" This is free documentation; you can redistribute it and/or
.\" modify it under the terms of the GNU General Public License as
.\" published by the Free Software Foundation; either version 2 of
.\" the License, or (at your option) any later version.
.\"
.\" The GNU General Public License's references to "object code"
.\" and "executables" are to be interpreted as the output of any
.\" document formatting or typesetting system, including
.\" intermediate and printed output.
.\"
.\" This manual is distributed in the hope that it will be useful,
.\" but WITHOUT ANY WARRANTY; without even the implied warranty of
.\" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
.\" GNU General Public License for more details.
.\"
.\" You should have received a copy of the GNU General Public
.\" License along with this manual; if not, see
.\" .
.\" %%%LICENSE_END
.\"
.TH MODIFY_LDT 2 2020-02-09 "Linux" "Linux Programmer's Manual"
.SH NAME
modify_ldt \- get or set a per-process LDT entry
.SH SYNOPSIS
.nf
.B #include
.PP
.BI "int modify_ldt(int " func ", void *" ptr ", unsigned long " bytecount );
.fi
.PP
.IR Note :
There is no glibc wrapper for this system call; see NOTES.
.SH DESCRIPTION
.BR modify_ldt ()
reads or writes the local descriptor table (LDT) for a process.
The LDT
is an array of segment descriptors that can be referenced by user code.
Linux allows processes to configure a per-process (actually per-mm) LDT.
For more information about the LDT, see the Intel Software Developer's
Manual or the AMD Architecture Programming Manual.
.PP
When
.I func
is 0,
.BR modify_ldt ()
reads the LDT into the memory pointed to by
.IR ptr .
The number of bytes read is the smaller of
.I bytecount
and the actual size of the LDT, although the kernel may act as though
the LDT is padded with additional trailing zero bytes.
On success,
.BR modify_ldt ()
will return the number of bytes read.
.PP
When
.I func
is 1 or 0x11,
.BR modify_ldt ()
modifies the LDT entry indicated by
.IR ptr\->entry_number .
.I ptr
points to a
.I user_desc
structure
and
.I bytecount
must equal the size of this structure.
.PP
The
.I user_desc
structure is defined in \fI\fP as:
.PP
.in +4n
.EX
struct user_desc {
unsigned int entry_number;
unsigned int base_addr;
unsigned int limit;
unsigned int seg_32bit:1;
unsigned int contents:2;
unsigned int read_exec_only:1;
unsigned int limit_in_pages:1;
unsigned int seg_not_present:1;
unsigned int useable:1;
};
.EE
.in
.PP
In Linux 2.4 and earlier, this structure was named
.IR modify_ldt_ldt_s .
.PP
The
.I contents
field is the segment type (data, expand-down data, non-conforming code, or
conforming code).
The other fields match their descriptions in the CPU manual, although
.BR modify_ldt ()
cannot set the hardware-defined "accessed" bit described in the CPU manual.
.PP
A
.I user_desc
is considered "empty" if
.I read_exec_only
and
.I seg_not_present
are set to 1 and all of the other fields are 0.
An LDT entry can be cleared by setting it to an "empty"
.I user_desc
or, if
.I func
is 1, by setting both
.I base
and
.I limit
to 0.
.PP
A conforming code segment (i.e., one with
.IR contents==3 )
will be rejected if
.I
func
is 1 or if
.I seg_not_present
is 0.
.PP
When
.I func
is 2,
.BR modify_ldt ()
will read zeros.
This appears to be a leftover from Linux 2.4.
.SH RETURN VALUE
On success,
.BR modify_ldt ()
returns either the actual number of bytes read (for reading)
or 0 (for writing).
On failure,
.BR modify_ldt ()
returns \-1 and sets
.I errno
to indicate the error.
.SH ERRORS
.TP
.B EFAULT
.I ptr
points outside the address space.
.TP
.B EINVAL
.I ptr
is 0,
or
.I func
is 1 and
.I bytecount
is not equal to the size of the structure
.IR user_desc ,
or
.I func
is 1 or 0x11 and the new LDT entry has invalid values.
.TP
.B ENOSYS
.I func
is neither 0, 1, 2, nor 0x11.
.SH CONFORMING TO
This call is Linux-specific and should not be used in programs intended
to be portable.
.SH NOTES
Glibc does not provide a wrapper for this system call; call it using
.BR syscall (2).
.PP
.BR modify_ldt ()
should not be used for thread-local storage, as it slows down context
switches and only supports a limited number of threads.
Threading libraries should use
.BR set_thread_area (2)
or
.BR arch_prctl (2)
instead, except on extremely old kernels that do not support those system
calls.
.PP
The normal use for
.BR modify_ldt ()
is to run legacy 16-bit or segmented 32-bit code.
Not all kernels allow 16-bit segments to be installed, however.
.PP
Even on 64-bit kernels,
.BR modify_ldt ()
cannot be used to create a long mode (i.e., 64-bit) code segment.
The undocumented field "lm" in
.IR user_desc
is not useful, and, despite its name,
does not result in a long mode segment.
.SH BUGS
On 64-bit kernels before Linux 3.19,
.\" commit e30ab185c490e9a9381385529e0fd32f0a399495
setting the "lm" bit in
.IR user_desc
prevents the descriptor from being considered empty.
Keep in mind that the
"lm" bit does not exist in the 32-bit headers, but these buggy kernels
will still notice the bit even when set in a 32-bit process.
.SH SEE ALSO
.BR arch_prctl (2),
.BR set_thread_area (2),
.BR vm86 (2)
.SH COLOPHON
This page is part of release 5.10 of the Linux
.I man-pages
project.
A description of the project,
information about reporting bugs,
and the latest version of this page,
can be found at
\%https://www.kernel.org/doc/man\-pages/.